शिक्षा निदेशालय, राष्ट्रीय राजधानी क्षेत्र दिल्ली

Directorate of Education, GNCT of Delhi

अभ्यास प्रश्न पत्र

Practice Paper

Term-II (2021-22)

कक्षा – XII

Class - XII

गणित (कोड: 041)

Mathematics (Code: 041)

समय: 2 घंटे

अधिकतम अंक: 40

Time: 2 hours Maximum Marks: 40

सामान्य निर्देश:

1- इस प्रश्न पत्र मे तीन खंड हैं -अ ,ब, स प्रत्येक भाग अनिवार्य है।

2-खंड अ में छह संक्षिप्त उत्तर -I वाले प्रश्न हैं जिसमें प्रत्येक 2 अंक का है।

3-खंड ब में चार संक्षिप्त उत्तर -II वाले प्रश्न हैं जिसमें प्रत्येक 3 अंक का है।

4 -खंड स में चार दीर्घ उत्तर वाले प्रश्न हैं जिसमें प्रत्येक 4 अंक का है।

5- कुछ प्रश्नों मे आंतरिक विकल्प दिया है।

6-प्रश्न 14 केस पर आधारित प्रश्न है जिसके दो उपभाग हैं प्रत्येक 2 अंक का है।

General Instructions:

- 1. This question paper contains three sections A, B and C. Each part is compulsory.
- 2. Section A has 6 short answer type (SA1) questions of 2 marks each.
- 3. Section B has 4 short answer type (SA2) questions of 3 marks each.
- 4. Section C has 4 long answer type questions (LA) of 4 marks each.
- 5. There is an internal choice in some of the questions.
- 6. Q14 is a case-based problem having 2 sub parts of 2 marks each

	खंड - अ	
	SECTION – A	
प्र. स.		अंक
Q. No.		Marks
1	ज्ञात कीजिए Evaluate $\int \left(\frac{1+x}{1+x^2}\right) dx$	
	अथवा (OR)	
	ज्ञात कीजिए Evaluate $\int \left(\frac{3x-1}{(x-2)^2}\right) dx$	2
2.	अवकल समीकरण की कोटी और घात का योग ज्ञात कीजिए।	
	Write the sum of the order and degree of differential equation	
	$\frac{d}{dx}\left\{\left(\frac{dy}{dx}\right)^3\right\} = 0$	2

3	यदि दो इकाई सदिशों का योग एक इकाई सदिश है तब सिद्ध कीजिए कि उनके अन्तर का परिमाण $\sqrt{3}$ है।	
		2
	If the sum of two unit vectors is unit vector, prove that magnitude of their difference is $\sqrt{3}$	
4	दी हुई रेखा की दिककोज्याएं जात कीजिए.	
	Find the direction cosines of the line	
	$\frac{x+2}{4} = \frac{3x-y}{2} = \frac{2z-5}{3}$	2
5	एक थैले जिसमे 5 सफेद तथा 4 हरे रंग की गेंदें हैं इनमें से 3 गेंदें एक एक करके निकाली जाती हैं	
3	तथा पहली गेंद दूसरे के निकालने से पहले वापिस नहीं रखी जाती। हरी गेंदों की संख्या का प्रायिकता बंटन जात कीजिए।	
	Three balls are drawn one by one without replacement from a bag containing 5	
	white and 4 green balls . Find the probability distribution of number of green balls drawn.	2
6	52 पत्तों की एक गड़डी में से यहच्छया बिना प्रतिस्थापित किए दो पत्ते निकाले गए। एक कार्ड के लाल	
Ü	तथा दूसरे के काले होने की प्रायिकता ज्ञात कीजिए।	
	Two cards are drawn drawn at random one by one without replacement from a	
	well shuffled pack of 52 playing cards . Find the probability that one card red and	2
	other is black.	
	खंड – ब	
	SECTION – B	
7	दिए हुए समाकलन का मान जात कीजिए।	
	Evaluate the following integral $\int \left(\frac{dx}{1+x+x^2+x^3} \right)$	3
<u> </u>		
	निम्न अवकल समीकरण का व्यापक हल ज्ञात कीजिए.।	
	Find the general solution of the following differential equation:	
	$x dy - y dx = \sqrt{x^2 + y^2} dx$	
	OR	
	निम्न अवकल समीकरण $\frac{dY}{dx}$ - $3y\cot x = \sin 2x$ का हल ज्ञात कीजिए.।	
	_ `	
	दिया है $y=2$ जब $x=\frac{\pi}{2}$	3
	Solve the following differential equation	3
	$\frac{dY}{dx}$ - 3ycotx = sin2x ,given that y=2 when x= $\frac{\pi}{2}$	
9	$\vec{a}, \vec{b}, \vec{c}$ तीन सिदश इस प्रकार हैं तािक $\vec{a} \times \vec{b} = \vec{c}, \vec{b} \times \vec{c} = \vec{a}$	
-	सिद्ध कीजिए $\vec{a}, \vec{b}, \vec{c}$ परस्पर लम्बवत होंगे तथा $ \vec{b} $ =1 $ \vec{c} $ = $ \vec{a} $	
	$\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $\vec{a} \times \vec{b} = \vec{c}, \vec{b} \times \vec{c} = \vec{a}$	3
	prove that $,\vec{a},\vec{b},\vec{c}$ are mutually at right angles and $ \vec{b} =1$, $ \vec{c} = \vec{a} $	

10		
	दो रेखाओं $\vec{r}=4\hat{i}-3\hat{j}+\lambda(\hat{i}+2\hat{j}-2\hat{k})$ तथा $\vec{r}=\hat{i}+\hat{j}-2\hat{k}-\mu(2\hat{i}+4\hat{j}-4\hat{k})$ के मध्य न्यूनतम दूरी	
	ज्ञात कीजिए। Find the shortest distance between the lines	
	$\vec{r} = 4\hat{i} - 3\hat{j} + \lambda(\hat{i} + 2\hat{j} - 2\hat{k}) \text{ and } \vec{r} = \hat{i} + \hat{j} - 2\hat{k} - \mu(2\hat{i} + 4\hat{j} - 4\hat{k})$ OR	3
	समतल का सिदश तथा कार्तीये समीकरण ज्ञात कीजिए जो बिन्दु (1,2,-4) से गुजरता हो तथा $\vec{r}=\hat{i}+2\hat{j}-4\hat{k}=\lambda\left(2\hat{i}+3\hat{j}+8\hat{k}\right)$ और $\hat{i}-3\hat{j}+5\hat{k}+\mu\left(\hat{i}+\hat{j}-\hat{k}\right)$ के समांतर हो।	
	Find the vector and Cartesian forms of the equation of the plane passing through the point (1,2,-4) and parallel to the lines $\vec{r} = \hat{i} + 2\hat{j} - 4\hat{k} = \lambda(2\hat{i} + 3\hat{j} + 6\hat{k})$ and $\hat{i} - 3\hat{j} + 5\hat{k} + \mu(\hat{i} + \hat{j} - \hat{k})$.	
	खंड – स	
	SECTION – C	
11	ज्ञात कीजिए 2	
	Evaluate: $\int_{-1}^{2} x^3 - x dx$	4
12	प्रथम चतुर्थाश मे वृत $x^2+y^2=16$ तथा रेखा $\sqrt{3}$ $y=x$ से घिरे क्षेत्र का समाकलन विधि द्वारा क्षेत्रफल ज्ञात कीजिए Find the area bounded by the circle $x^2+y^2=16$ and the line $\sqrt{3}$ $y=x$, in the first quadrant using integration. 3थवा / OR वक्र $y=x^3$, x अक्ष एवं कोटियों $x=-2$ तथा $x=1$ से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए Find the area bounded by the curve $y=x^3$, the x axis and ordinate $x=-2$ and $x=1$	4
13	बिन्दु (1,2,3) से समतल $x-y+z=5$ की रेखा $\frac{x}{2} = \frac{y}{3} = \frac{z}{-6}$ से समांतर नापी गई दूरी ज्ञात कीजिए।	
	F)nd the distance of the point (1,2,3) from the plane x-y+z=5 measured parallel to the line $\frac{x}{2} = \frac{y}{3} = \frac{z}{-6}$.	4
14	केस आधारित / डेटा आधारित <u>CASE BASED /DATA BASED</u>	
	कोई भी COVID-19 टेस्ट 100% सही नहीं है, इसलिए उनकी त्रुटियां और परिणाम दोनों महत्वपूर्ण हैं चल रहे COVID-19 महामारी के दौरान ,पूरी दुनिया मे RT-PCR परीक्षणों और तेज एंटीबॉडी - आधारित परीक्षणों दोनों के निदान में संभावित त्रुटियों के बारे में बह्त चर्चा है।	
	एक COVID PCR परीक्षण की विश्वसनीयता निम्नानुसार निर्दिष्ट की गई है:- COVID वाले लोगों मे से, 90% परीक्षण बीमारी का पता लगते हैं लेकिन 10% का पता नहीं चल पाता है। COVID से मुक्त लोगों मे से 99% परीक्षण को COVID नकारात्मक माना जाता है, लेकिन 1% को COVID सकारात्मक दिखाते हुए निदान किया जाता है। एक बड़ी आबादी मे से केवल 1% मे ही COVID है, एक व्यक्ति को याद्दिछक रूप से चुना जाता है, जिसे COVID PCR	

परीक्षण दिया जाता है, और रोगविज्ञानी उसे COVID पॉजिटिव के रूप में रिपोर्ट करता है।

उपरोक्त जानकारी के आधार पर निम्नलिखित के उत्तर दीजिए:-

- (अ) 'व्यक्ति के COVID पॉजिटिव के रूप में परीक्षण किए जाने की संभावना क्या है' यह देखते हए कि 'उसे वास्तव में COVID है?
- ें (ब) इस बात की क्या प्रायिकता है कि 'उस व्यक्ति को वास्तव में कोविड हो गया है, यह देखते हुए कि 'उसकी कोविड पॉजिटिव के रूप में जांच की गई है?

No COVID-19 Test Is 100% Right, so Their Errors and Results Are Both Important During the ongoing COVID-19 pandemic, there is a lot of buzz regarding the possible errors in diagnoses with both RT-PCR tests and the faster antibody-based tests, all over the world.

The reliability of a COVID PCR test is specified as follows:

Of people having COVID, 90% of the test detects the disease but 10% goes undetected. Of people free of COVID, 99% of the test is judged COVID negative but 1% are diagnosed as showing COVID positive. From a large population of which only 0.1% have COVID, one person is selected at random, given the COVID PCR test, and the pathologist reports him/her as COVID positive.

Based on the above information, answer the following:-

- (a)What is the probability of the 'person to be tested as COVID positive' given that 'he is actually having COVID?
- (b). What is the probability that the 'person is actually having COVID given that 'he is tested as COVID positive?

2

2

Directorate of Education, GNCT of Delhi

Solution of Practice Paper Term -II (2021-22)

Class – XII

Mathematics (Code: 041)

Q. No.	VALUE POINTS
	SECTION – A
1	Let $I = \int \left(\frac{1+x}{1+x^2}\right) dx = \int \left(\frac{1}{1+x^2}\right) dx + \int \left(\frac{x}{1+x^2}\right) dx$ (1)
	$\int \left(\frac{x}{1+x^2}\right) dx = \tan^{-1} x [formula]$
	to evaluate $\int \left(\frac{x}{1+x^2}\right) dx$ put $1+x^2=t$ on differentiating both sides we get $2x dx=dt$ or $x dx=\frac{1}{2} dt$
	$\int \left(\frac{x}{1+x^2}\right) dx = \int \left(\frac{1}{2} \frac{dt}{t}\right) = \frac{1}{2} \log t = \frac{1}{2} \log t + x^2$
	$=\frac{1}{2}\log 1 + x^2$
	Putting these values in equation (1) we have $I = \tan^{-1} x + \frac{1}{2} \log 1 + x^2 + c$
	OR
	SOL- $\int \left(\frac{3x-6+6-1}{(x-2)^2}\right) dx = \int \left(\frac{3(x-2)+5}{(x-2)^2}\right) dx = 3\log x-2 +5\int (x-2)^{-2} dx$
	$=3\log x-2 +5\frac{(x-2)^{-1}}{-1}+c=3\log x-2 -\frac{5}{x-2}+c$
2	Given differential equation is $ \frac{d}{dx} \left\{ \left(\frac{dy}{dx} \right)^3 \right\} = 0 $ $ =>3 \left(\frac{dy}{dx} \right)^{3-1} \frac{d}{dx} \left(\frac{dy}{dx} \right) = 0 $ $ =>3 \left(\frac{dy}{dx} \right)^2 \frac{d^2y}{dx^2} = 0 $ $ d^2y $
	clearly the highest order derivative occurring in the differential equation is $\frac{d^2 y}{dx^2}$ so its order is 2. Also i
	is a polynomial equation in derivative and the highest power raised to is $\frac{d^2 y}{dx^2}$ one so its degree is one Hence the sum of the order and degree of the above given differential equation is $2+1=3$

3	Sol-Let \hat{a} and \hat{b} be unit vectors such that $\hat{a}+\hat{b}$ is also a unit vector					
	$ \hat{a} = \hat{b} = \hat{a} + \hat{b} $					
		1 1 1	` ' ' '			
		, , ,	$+(\hat{b})^2-2\hat{a}\hat{b}$	·(3)		
		· · ·	and (3) we have $(2)^2 + 2 \cdot 2 \cdot 1 = 12$			
			$-2(\hat{b})^2 = \hat{a} ^2 + 2 \hat{b} ^2$			
	1 -		$ \hat{a} \hat{b} \hat{a} + \hat{b} $ (each	=1)		
		$-\hat{b} ^2=2 \hat{a} ^2+2 \hat{b} ^2$				
	$\left \hat{a} - \hat{b} \right ^2$	$=3 \Rightarrow \hat{a} - \hat{b} = \sqrt{3}$	3			
4	8 -	$\frac{-4}{89}, \frac{3}{\sqrt{89}}$				
5	√89 √	89 √89				
	Sol-					
		balls are drawn	one by one with	out replacemen	nt from a bag cont	aining 5 whit and 4 green
	balls.		C 1 11 /	. 0.1	1 11 1	
			of green balls (or		en balls drawn) of green balls in the	e haσ
			• \		_	vs i.e., all the three white
			$\frac{4}{8}x\frac{3}{7} = \frac{60}{504} = \frac{5}{42}$	C		,
		5	0 / 304 42	1 11 / 11	1.4	11 \ \ ' \ .1 \ 1
						alls) in three draws
	=P(GV)	VW)+P(WGW)	$+P(WWG)=\frac{4}{9}x$	$\frac{3}{8}x\frac{1}{7} + \frac{3}{9}x\frac{1}{8}x$	$\frac{1}{7} + \frac{3}{9}x + \frac{1}{8}x + \frac{1}{7}$	
	$=\frac{240}{504}$	20				
	J0 -1	42	-11. :1:4	·	111 / 1 1	1.4. 111) 41
		4 =	obability of getti	ing two green	balls (and hence	one white ball) in three
	draws=	= 13 42				
	and sir	nilarly P(X=3)=	= Probability of g	getting all the t	hree green balls =	
	P(GGC	$(3) = \frac{4}{9} \times \frac{3}{8} \times \frac{2}{7} = \frac{2}{4}$	2			
		<i>o o ,</i> .	ribution of X is			
	X	0	1	2	3	
	P(X)	5	20	15	15	
		$\frac{5}{42}$	$\frac{20}{42}$	42	$\frac{15}{42}$	
6	Solution-	There are 26 red	d cards and 26 bl	ack cards in a	pack of 52 playing	cards.
	Let R and	B denote the ev	ent of drawing i	ed card and bl	lack card respective	ely
			=P(first card is	red and secon	nd one is black)+	P(first card is black and
	second one		\			
	=P(R)+P	$\left(\frac{B}{R}\right) + P(B)P\left(\frac{R}{B}\right)$)			
	$=\frac{26}{52}x\frac{26}{51}+$,			
		52 ^x 51				
	$=\frac{26}{51}$					
	51					

	SECTION – B
7	Let $I = \int \left(\frac{dx}{1+x+x^2+x^3}\right) = \int \left(\frac{dx}{(1+x)+x^2(1+x)}\right) = \int \left(\frac{dx}{(1+x)(1+x^2)}\right)$ let $\left(\frac{dx}{(1+x)(1+x^2)}\right) = \frac{A}{1+X} + \frac{BX+C}{1+x^2}$ ————————————————————————————————————
8	The given differential equation is $xdy - ydx = \sqrt{x^2 + y^2}dx$ dividing by dx $x\frac{dy}{dx} - y = \\ = > x\frac{dy}{dx} = y + \sqrt{x^2 + y^2} = > \frac{dy}{dx} - \frac{y}{x} - \frac{\sqrt{x^2 + y^2}}{x}$ Put $y = vx = > \frac{dy}{dx} = v + x\frac{dv}{dx}$ Therefore $v + x\frac{dv}{dx} - \frac{vx}{x} = \frac{\sqrt{x^2 + v^2}x^2}{x} = > v + x\frac{dv}{dx} - v = \sqrt{1 + v^2}$ $= > \int \left(\frac{dv}{\sqrt{1 + v^2}}\right) = \int \left(\frac{dx}{x}\right) = > \log v + \sqrt{1 + v^2} = \log x + \log c = > \log\log \left \frac{y}{x} + \sqrt{1 + \frac{y^2}{x^2}}\right = \log Cx = > \frac{y}{x} + \sqrt{\left(\frac{x^2 + y^2 x^2}{x^2}\right)}$ $= Cx = > y + \sqrt{x^2 + y^2} = Cx^2$ OR The given differential equation is $\frac{dy}{dx} - 3y \cos(x) = \sin(2x)$ Or $\frac{dy}{dx} - 3y \cos(x) = \sin(2x)$ given that $y = 2$ when $x = \frac{\pi}{2}$ Compairing with $\frac{dy}{dx} + Py = Q$ we have $P = 3 \cot x$ and $Q = \sin 2x$

	∫ Pdx
	$= -3 \int \cot x dx = -3 \log \sin x = \log(\sin x)^{-3}$
	$IF = \int e^{pdx} = e^{\log(\sin x)^{-3}} = (\sin x)^{-3} = \frac{1}{\sin^3 x}$
	The general solution is $y(IF.) = \int Q(IF) dx + C$
	$\operatorname{or} y \frac{1}{\sin^3 x} = \int \sin 2x \frac{1}{\sin^3 x} dx + C$
	$\frac{y}{\sin^3 x} = \int \frac{(2\sin x \cos x)}{\sin^3 x} dx + C$
	$=2\int \frac{\cos x}{\sin^2 x} dx + C = 2\int \frac{\cos x}{\sin^2 x} dx + C = \int 2 \csc x \cot x dx = -2 \csc x + C$
	$\sin^2 x \qquad \sin^2 x \qquad \sin x \cos x$ or
	$\frac{y}{\sin^3 x} = \frac{-2}{\sin x} + C$
	$ \begin{array}{c} \sin x \cdot \sin x \\ y = \sin^3 x \end{array} $
	multiplying every term by LCM= $\sin^3 x$
	y=-2sin ² x+csin ³ xTo find C putting y=2 when x= $\frac{\pi}{2}$ (given in (1)
	$2=-2\sin^2\frac{\pi}{2}+\cos^3\frac{\pi}{2}$
	or 2=-2+c or c=4 puttung c=4 the required particular solution is
	$y=-2\sin^2 x+4\sin^3 x$
9	$\vec{a} \times \vec{b} = \vec{c} = \vec{c} \perp \vec{a} \text{ and } \vec{c} \perp \vec{b}$ (1)
	(By def of cross product)(1) similarly $\vec{b} \times \vec{c} = \vec{a} = > \vec{a} \perp \vec{b}$ and $\vec{a} \perp \vec{c}$ (2)
	from (1) and (2) we have $\vec{a}, \vec{b}, \vec{c}$ are mutually at right angles.
	Now $\vec{a} \times \vec{b} = \vec{c} \text{ (given)} = \vec{a} \times \vec{b} = \vec{c} $
	Using $(2) \vec{a} \vec{b} \sin 90^0 = \vec{c} $
	$ \vec{a} \vec{b} ^{=} \vec{c} (3)$
	similarly $\vec{b} \times \vec{c} = \vec{a} = \vec{b} \times \vec{c} = \vec{a} $
	$=> \vec{b} \vec{c} = \vec{a} (4)$
	Dividing (3) by(4) (to eliminate $ \vec{b} $) we have
	$\frac{ \vec{a} }{ \vec{c} } = \frac{ \vec{c} }{ \vec{a} } = \vec{a} ^2 = \vec{c} ^2 \text{therefore } \vec{a} = \vec{c} - \dots - (5)$
	dividing (3) by (5) $ \vec{b} =1$ putting it in (4) we have
	$ \vec{c} = \vec{a} $
10	Solution-Here $\vec{b}_1 = \hat{i} + 2\hat{j} - 2\hat{k}$ and $\vec{b}_2 = 2\hat{i} + 4\hat{j} - 4\hat{k} = 2(\hat{i} + 2\hat{j} - 2\hat{k})$
	$=2\vec{b}_1$ Therefore, the lines are parallel now using the formula for distance between parallel lines =
	$\frac{\left \left(\vec{a}_2 - \vec{a}_1\right) \times \vec{b}\right }{\left \left(\vec{a}_2 - \vec{a}_1\right) \times \vec{b}\right }$
	$ \vec{b} $
	Shortest distance is $2\sqrt{5}$
	OR Sol-
	Given point is $\vec{a_1} = (1, 2, -4) = \hat{i} + 2\hat{j} - 4\hat{k}$ we know that vector along the line $\vec{r} =$
	$\hat{i}+2\hat{j}-4\hat{k}=\lambda(2\hat{i}+3\hat{j}+6\hat{k})$ is $\vec{b}_1=(2\hat{i}+3\hat{j}+6\hat{k})$ and a vector along the line $\vec{b}_2=(\hat{i}+\hat{j}-\hat{k})$
	we know vector equation of the plane passing through point \vec{a} and parallel to the two given lines is (\vec{r})
	$-\vec{a}_1) \cdot \vec{n} = 0$ $\text{where } \vec{r} = \vec{b} \cdot \vec{v} \vec{b}$ $\tag{1}$
	where $\vec{n} = \vec{b}_1 \times \vec{b}_2$ (1) $now \ \vec{n} = \vec{b}_1 \times \vec{b}_2$
	$n_0 w = o_1 x o_2$

$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 6 \\ 1 & 1 & -1 \end{vmatrix}$
$=\hat{i}(-3-6)-\hat{j}(-2-6)+\hat{k}(2-3)=-9\hat{i}+8\hat{j}-\hat{k}$
from equation $(1)\vec{r} \cdot \vec{n} - \vec{a_1} \cdot \vec{n} = 0 \implies \vec{r} \cdot \vec{n} = \vec{a_1} \cdot \vec{n} = (2)$
putting values of $\vec{a_1}$ and \vec{n} in (2) equation of required plane is
i.e., $\vec{r} \cdot (-9\hat{i} + 8\hat{j} - \hat{k}) = (\hat{i} + 2\hat{j} - 4\hat{k}) \cdot (-9\hat{i} + 8\hat{j} - \hat{k}) = -9 + 16 + 4$
or $\vec{r} \cdot (-9\hat{i} + 8\hat{j} - \hat{k}) = 11$ (Vector form of the plane)
$\operatorname{or}(x\hat{i} + y\hat{j} + z\hat{k}).(-9\hat{i} + 8\hat{j} - \hat{k}) = 11$
or $9x+8y-z=11$
or 9x+8y-z-11=0 (Cartesian form of the plane)

SECTION - C

$$11 \qquad \text{Let I} = \int_{1}^{2} |x^3 - x| dx$$

Again let $f(x) = x^3 - x = x(x^2 - 1) = x(x - 1)(x + 1)$

Now break the limit at x=0,1 (because on putting f(x)=0 we get x=0,1,-1)

It is clear that $\chi^3 - \chi \ge 0$ on [-1,0]

$$x^3 - x \le 0 \text{ on}[0,1]$$

 $x^3 - x \ge 0 \text{ on}[1,2]$

Hence the interval of the integral can be subdivided as

$$\int_{-1}^{2} |x^{3} - x| dx = \int_{-1}^{0} (x^{3} - x) dx - \int_{0}^{1} (x^{3} - x) dx + \int_{1}^{2} (x^{3} - x) dx$$

$$= \int_{-1}^{0} (x^{3} - x) dx + \int_{0}^{1} (x - x^{3}) dx + \int_{1}^{2} (x^{3} - x) dx = \frac{11}{4}$$

Given equation of the circle is $x^2 + y^2 = 16$ and $\sqrt{3}y = x$, represents a line through origin.

The line $y = \frac{1}{\sqrt{3}}x$ intersect the circle.

Therefore
$$x^2 + \frac{x^2}{3} = 16$$

$$\frac{3x^2 + x^2}{3} = 16 = >4x^2 = 48$$

$$=>_{x}^{2}=12=> x=\pm 2\sqrt{3}$$

When x=2 $\sqrt{3}$ then y= $\frac{2\sqrt{3}}{\sqrt{3}}$ =2

Required area shaded in first quadrant =(Area under the line $y = \frac{1}{\sqrt{3}}x$ from x = 0 to $2\sqrt{3}$) +

(Area under the circle from $x=2\sqrt{3}$ to x=4

$$= \int_{0}^{2\sqrt{3}} \frac{1}{\sqrt{3}} x \, dx + \int_{2\sqrt{3}}^{4} \sqrt{16 - x^2} \, dx$$

after solving it we get required area = $\frac{4\pi}{3}$ sq units

Required area (shaded)

= Area under curve $y = x^3$ with respect to 'x' axis from x = -2 to x = 1

$$= \int_{-2}^{1} |x^{3}| dx = \left| \int_{2}^{0} |x^{3}| dx \right| + \int_{0}^{1} |x^{3}| dx.$$

$$= \left| \int_{-2}^{0} -x^{3} dx \right| + \int_{0}^{1} x^{3} dx$$

As cube a value below 0 is negative

$$= \frac{-x^4}{4} \bigg]_{-2}^{0} + \frac{x^4}{4} \bigg]_{0}^{1} = - \left[0 - \frac{(-2)^4}{4} \right] + \left[\frac{1}{4} - \frac{0}{4} \right]$$

$$=-\left[\frac{-16}{4}\right]+\frac{1}{4}=\frac{16}{4}+\frac{1}{4}=\frac{17}{4}$$
 sq.units

We know that d.r.'s of the line $\frac{x}{2} = \frac{y}{3} = \frac{z}{-6}$ are is denominators 2, 3, -6

therefore d.r.'s of any line parallel to it are also 2,3,-6 therefore equation of the line through P (1,-2,3) and parallel to the given line $\frac{x}{2} = \frac{y}{3} = \frac{z}{-6}$ are

$$\frac{x}{2} = \frac{y}{3} = \frac{z}{-6}$$

$$\frac{x-1}{2} = \frac{y+2}{3} = \frac{z-3}{-6} (=\lambda) - \dots (1)$$

let this line meet the given plane x-y+z=5 in the point Q say) from equation (1) x-1=2 λ y+2=3 λ ,z-3=-6 λ =>x=2 λ +1 ,y=3 λ -2

$$z=-6\lambda+3$$

13

therefore point Q is Q($2\lambda+1$, $3\lambda-2$, $-6\lambda+3$) for some real λ

But this point Q lies on the plane x-y+z=5 therefore

$$(2\lambda+1)$$
- $(3\lambda-2)(-6\lambda+3)$ =

$$2\lambda + 1 - 3\lambda + 2 - 6\lambda + 3 = 5 = > -7\lambda = -1 = > \lambda = \frac{1}{7}$$

putting $\lambda = \frac{1}{7}$ in (3) coordinates of point Q are $(\frac{9}{7}, \frac{-11}{7}, \frac{15}{7})$

Required distance is PQ

$$\sqrt{\left(\frac{9}{7}-1\right)^2+\left(\frac{-11}{7}+2\right)^2+\left(\frac{15}{7}-3\right)^2}=1$$

$$\sqrt{\left(\frac{2}{7}\right)^2 + \left(\frac{3}{7}\right)^2 + \left(\frac{-6}{7}\right)^2}$$

	$\sqrt{\frac{4}{49} + \frac{9}{49} + \frac{36}{49}} = \sqrt{\frac{49}{49}} = 1$
	$\sqrt{49}$ 49 49 $\sqrt{49}$
14	(a)0.9 2.
	(b)0.083